
Metapopulation and Coupled - Logistic Maps

R. Basuhi,1

Keshav Srinivasan1

Sandesh Kalantre1

Kumar Ayush1

Rakshit Jain1

1Department of Physics
Indian Institute of Technology, Bombay.

October 31, 2015

Metapopulation and Coupled - Logistic Maps October 31, 2015 1 / 66



Outline

1 Motivation

2 Food, Area and Population Models

3 Lyapunov exponents and attractor reconstruction

4 Analysis of Lloyd’s Model

5 Migration and Stability Analysis

Kumar Ayush Metapopulation and Coupled - Logistic Maps October 31, 2015 2 / 66



Motivation
Indus Valley Theories

Vahia (2011) theorized that the Indus Valley Civilization declined due to
the failure of society to solve increasing needs of the civilization because of
delay in arrival of new technologies.
In a personal discussion, he elaborated on how the migration and
settlement of species is governed by Non Linear Dynamics
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Motivation
Age of Empires III

Uncountable games of Microsoft Age of Empires led to an intuitive belief
that the game results have a chaotic nature. The army count time series
shows in phase oscillations leading to extinction for one party and
saturation for the other.
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Plan A: Food and Area
Introduction

We came to a consensus that other than population, for the evolution of a
single city, we should try at least two other variables namely food and
area. Their definitions evolved through the course of our project as we
gained more insight into how they’re governed. The three variables of a
single city are formally defined as:

Population

Representative of the number of people living in a city

Food

Represents the amount of food stored in excess for a unit time, negative
value is indicative of a scarcity.

Area

Represents the area claimed by civilization, to be used for housing and
cultivation both in proportions.
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Plan A: Food and Area
Model I

Ȧ = 0.01P − A

Ḟ = (0.1P − F )(A− 0.02P)

Ṗ = 0.5P − 0.5(0.1P − F )
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Plan A: Food and Area
Model II

Ȧ = 100Ae−A(P − A)

Ḟ = 0.7A− P

Ṗ = 2.75
F 2

P
− P
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Plan A: Food and Area
Model III

Ȧ =

{
max(Ṗ, 0) P > A

0 otherwise

Ḟ = 0.7A− P

Ṗ = 1.125F − P
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Plan A: Food and Area
Model IV

Ȧ =


P − A P > A

max(Ṗ, 0) 0.3A < P < A

0 otherwise

Ḟ = 0.7A− P

Ṗ = 1.125F − 0.2P
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Plan A: Food and Area
Model V:Multiple Cities

Ȧ =


P − A P > A

max(Ṗ, 0) 0.3A < P < A

0 otherwise

Ḟ = 0.7A− P

Ṗ = 1.125F − 0.2P ±M

Ṁ = P ′(
F

P + 0.1
− F ′

P ′ + 0.1
)
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Plan A: Food and Area
Model V:Multiple Cities
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Plan A: Food and Area
Model V:Multiple Cities
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Where is the Chaos?
Hidden Non-Linearity

This model justified our claim that the possibility of migration stabilizes
the system, in the sense that the population is saved from extinction as
they have an option to migrate to locations with better opportunities. But
our initial motivation was an intuition towards chaos as seen in AoE. It
was still missing.
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1 + 1 6= 2
Solution

A careful examination of the game dynamics and how battles are fought
led to the observation that two soldiers are not equivalent to a single
soldier with twice the health and attack power. This is the non-linearity in
the system which leads to possible chaos.
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1 + 1 6= 2
Solution
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Plan B
Levins to Lloyds

After failing to model a population of populations in a satisfactory manner,
we came across Levins (1969) who coined the term metapopulation for
the kind of systems we were aiming to study, with the variables being the
carrying capacity of the patches of lands, migration costs and population.
Although, his equation just took account of evolution of the fraction of
such patches populated in terms of settlement and extinction coefficients.

dN

dt
= cN(1− N)− eN
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Plan B
Llyods

Now we had the term we needed to search with, and we came upon a
beautiful analysis on Coupled Logistic Maps in Llyods (1994). It
demonstrated our idea of stabilization due to migration and coupling,
along with rich properties arising out of logistic maps.
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Logistic Maps

Logistic Maps are recurrence relations of degree 2 often used as an
example of how chaotic behaviour can arise from very simple non-linear
dynamical equations.
It was popularised by biologist Robert May, who gave a discrete
demographic model analogous to the logistic equation.
Mathematically, it is given by:

xn+1 = µxn(1− xn)

Where xn is between 0 and 1 and ’µ’ is our parameter of interest in the
domain [ 0, 4 ]
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Coupled Logistic Maps
Alun.L.Lloyd

In his paper titled : ’The Coupled Logistic Map: A Simple Model for the
Effects of Spatial Heterogeneity on Population Dynamics’ Lloyd describes
a simple model consisting of two diffusively coupled logistic maps and used
it to examine the effects of spatial heterogeneity on population dynamics.

In his paper, he studies the simplest biologically realistic model, which (in
terms of non-dimensional variables) takes the form:

xn+1 = (1− α)f (xn) + αf (yn)

yn+1 = (1− α)f (yn) + αf (xn)

Where f(x) takes the standard form: f (x) = µx(1− x)
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Coupled Logistic Maps

In the previous equations coupling is linear in nature, but many times the
coupling can be bi-linear in nature. For example:

xn+1 = f (xn)± αf (xn)f (yn)

yn+1 = f (yn)± αf (xn)f (yn)

From now onward we will refer to the linear model as 1 and the bilinear
model as 2.
The behaviour of single logistic maps are well understood, so the method
we use to analyse coupled maps is to fix µ and vary α.
In this way, we can study the behaviour of coupled maps whose individual
behaviour is well known.
A single logistic has limited dynamics but a coupled logistic map can rich
dynamic nature.
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Quasiperiodic Orbits

On converting our logistic map to polar coordinates, we get:

rn+1 = λrn − r3n

θn+1 = θn + α

Clearly, we get an invariant closed circle at r =
√
λ− 1 and the dynamics

on the circle are given by θn+1 = θn + α. If α is a rational multiple of 2π
and α = p/q then the orbit will be periodic with period q. If α is an
irrational multiple of 2π then the orbit will not close up. This is called a
quasiperiodic orbit.
Quasiperiodic orbits show properties of both periodic and aperiodic orbits.
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Lyapunov Exponent

The Lyapunov exponents λ1 and λ2 can be used to distinguish between
chaotic, quasiperiodic, periodic and fixed point behaviour. These two
exponents measure the long term average rates of divergence or
convergence of nearby orbits in this two dimensional system.
With no loss of generality, assuming λ1 to be larger,

If λ1 is positive, then nearby orbits diverge, there is sensitive
dependence on initial conditions and hence chaos.

If λ1 is zero, the motion is quasiperiodic and the attractor is a torus,
in our system this means a closed curve, and the orbit never closes; or
it can be a stable cycle (if the orbit closes)

If λ1 is negative then we have a periodic orbit, a fixed point being a
particular example of this.
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Lyapunov exponents - General ideas

Lyapunov exponents : Lyapunov exponents are rates of exponential
divergence or convergence of nearby points in phase space.
They can be defined as rate of exponential divergence of the principal
axes of an infinitesimal sphere under the system evolution.

A system with atleast one positive Lyapunov exponent will be defined
to be chaotic.

An intersting interpretation of Lyapunov exponents is the rate at
which information is lost or added to the system.

Is calculating Lyapunov exponents easy?

No. We are limited because of exponential divergence and round-off
errors.

In theory, there is no difference between theory and practice. But, in
practice, there is.

— Richard M. Nixon
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Analytic method for Lyapunov exponents

We consider a fiducial trajectory plus a tangent space approach.1

Algorithm

Generate a fiducial trajectory for a given set of initial conditions

Consider an orthonormal set of unit vectors which evolve
according to the Jacobian of the system.

However, each vector will tend to diverge along the direction of
highest local growth. To circumvent this issue, we apply
repeated Gram - Schmidt Orthonormalization on the vector
frame after a certain number of iterations.

The rate of growth of norm of the first vector, the area and so
on give us the Lyapunov exponents.

1Benettin et al (1980)
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Example - Henon Map

We consider the Henon map to illustrate the method. (a = 1.4, b = 0.3)

xn+1 = 1− ax2n + yn

yn+1 = byn
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Example - Henon Map

The renormalisation was performed after M = 15 steps. A total of 300
such cycles were performed.
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Attractor Reconstruction

Attractor reconstruction refers to methods for inference of
geometrical and topological information about a dynamical
attractor only from observations.

Given the time series x(t), where the system itself could have other
independent dynamical variables, it is possible to reconstruct the
phase space?

Suprisingly enough, the answer turns out in the affirmative

Given the time series x(t), an m-dimensional phase portrait is
reconstructed with delay coordinates. A point on the attractor is
given by x(t), x(t + τ).....x(t + (m − 1)τ) where τ is the almost
arbitrarily chosen delay time.
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Embedding and Takens’ Theorem

Embedding The image of the n-manifold is completely unfolded in
the larger space. In particular, no two points in the n-dimensional
manifold map to the same point in the larger space.

Whitney’s embedding Theorem : We should obtain an embedding
if m is chosen to be greater than twice the dimension of the
underlying attractor.

A delay embedding theorem uses an observation function (x(t)) to
construct the embedding function.

Takens’ theorem : The time-delayed versions
[x(t), x(t − τ), x(t − 2τ), · · · , x(t − 2nτ)] of one generic signal would
suffice to embed the n-dimensional manifold. There are some
technical assumptions that must be satisfied about the actual system.
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Attractor Reconstruction
In Action

Here is phase space of the Henon system reconstructed using τ = 1.
Except for a change of scale, there is a striking similarity between the plots.
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Attractor Reconstruction
What if we choose the wrong τ?
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Lyapunov Exponents from an Experimental Time Series

We present a method conceived by Wolf et al.We assume that the phase
space has been reconstructed by the method discussed.

Wolf’s Method

We locate the nearest neighbor (in the Euclidean sense) to the
initial point (x(t0).....x(t0 + (m− 1)τ) and denote the distance
between these two points L(t0).

At a later time t1, the initial length will have evolved to length
L′(t1).

This procedure is repeated until the fiducial trajectory has
traversed the entire data file, at which point we estimate

λ1 =
1

tM − t0

M∑
k=1

log2
L′(tk)

L(tk−1)

where M is the total number of replacement steps.

Sandesh Kalantre Metapopulation and Coupled - Logistic Maps October 31, 2015 32 / 66



Wolf’s Method
In Action
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Lloyd Model
Back to Business

Using the methods developed, the the largest Lyapunov exponent for the
coupled logistic map was calculated for various values of α.
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How can we analyze the coupled equations?

One way of summarizing the behaviour of a system like (1) or (2) is
to make a two-dimensional bifurcation diagram consisting of a grid of
points in the (µ,α) plane which we set to different colours according
to the behaviour seen at each pair of parameter values. Such
diagrams exhibit beautiful fractal structure and self-similarity.

However,the behaviour of the system not only depends on the two
parameters but also on the co-ordinates of the initial point, so these
diagrams really should be four-dimensional as the set (µ,α,x,y ) is
needed.
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How can we analyze the coupled equations?

The first is to use many different initial conditions for a given µ and α
,These are usually chosen at random. All of the attractors should be
seen if enough initial points are chosen. However, if we are near to an
a value where an attractor is created or destroyed (call this α0), only
a small set of initial conditions may tend to the attractor in which we
are interested.

However, we must always be aware that it is possible for attractors to
be created and destroyed during small changes in parameter values.

And for attractors having very small basins of attraction,It is very
easy to miss a lot of behaviour in a numerical study.
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Now the question arises how to plot these graphs?

Firstly we take 400*400 Initial values and will iterate them.

Then we will calculate phase between them

Finally we’re going to plot then according to their phase difference.
For a phase difference of zero, the point is given gray color,and will
represent in-phase solution and negative and positive out of phase
solutions are plotted by white and black respectively
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Phase plots for µ=3.2
α=0

While Plotting the graphs, my graphs looks like this for α =0
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Phase plots for µ=3.2

The interval I1 is invariant under f 2 and all points in its interior are
attracted to the stable fixed point inside I1, similarly the interval I2 is
invariant and all points in its interior are attracted to its stable fixed
point. The intervals I3 and I4 map onto I1 under f 2, and interval I5
maps onto I2. We can continue this process, decomposing the unit
interval into a collection of open intervals. Points on the boundaries
of the intervals get mapped to the unstable fixed point
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Phase plots for µ=3.2

Thus when we couple two such maps with α=0, the basins of
attraction are open rectangles formed by a cross product of the basins
of attraction of the uncoupled maps.

As α increases, the basin of attraction of the in phase solution grows
and that of the out of phase solution shrinks.This can seen quite well
in the next few slides
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Phase plots for µ=3.2
α=.01

Phase plot forα=.01
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Phase plots for µ=3.2
α=.058

Phase plot forα=.058. At this point, graph clearly shows the
solutions tend to the inphase solutions.
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Phase plots for µ=3.2
What happens if we increase more?

As we increase α, the in phase solution remains stable but the
out-of-phase solution loses its stability near α=0.058. This change
occurs by a pitchfork bifurcation of the second iterate of the coupled
map, as two unstable points collide with a stable point leaving a
single unstable point.
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Phase plots for µ=3.5

For this parameter value, the logistic map has α stable period-4 orbit,
an unstable period-2 orbit, and two unstable fixed points. For α=0
there are four period-4 attractors, corresponding to x and y
undergoing period-4 oscillations with four phase differences.

The structure of the basins of attraction is explained in the same way
as for the µ=3.2 case, except that one looks at f 4 instead of f 2
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Phase plots for µ=3.5
α=0

This structure is quite similar to the case ofµ=3.2 but with more
number of squares
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Phase plots for µ=3.5
α=0.12

Clearly the out of phase solutions are diminishing as we increase α
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Phase plots for µ=3.5
Analysis

As α is increased past about 0.0123, quasiperiodic behaviour is
observed as two tori.
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Phase plots for µ=3.5
Analysis

The symmetric period-4 orbit loses stability when α is just below
0.0364, in a pitchfork bifurcation. The period-2 orbit loses stability by
a pitchfork bifurcation for α just above 0.122, leaving the in-phase
(diagonal) period-4 solution globally stable

Figure is a plot of the largest Lyapunov exponent for each attractor
seen as α increases from 0 to 0.15. The region for which
quasiperiodic behaviour occurs is clearly seen as α range of α values
for which this exponent is zero
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Phase plots for µ=3.7

The logistic map exhibits one band chaos for this parameter value.
When the maps are coupled with α=0 we see just one attractor,
which is square and symmetric about the diagonal. As the coupling is
increased the attractor undergoes a complicated sequence of changes.
Many intervals of a values give periodic behaviour, as is seen in the
single logistic map beyond the onset of chaos. As a result of this, a
numerical study of the system will tend to miss a lot of periodic
behaviour.

As a is increased between 0.0130 and 0.0135, the single block chaotic
attractor suddenly changes into a two block attractor. A qualitative
change in the structure of the chaotic attractors has occurred, such a
change is known as a crisis. This type of crisis is called an interior
crisis.
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Plots for µ=3.7
Analysis

Figure: Phase Space Plots for µ=3.7 and α=.012
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Plots for µ=3.7
Analysis

Figure: Phase Space Plots for µ=3.7 and α=.0135
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Plots for µ=3.7
Analysis

Now we see some behaviour in between and will analyse α values
between .55 and .70 to see what happens there.For α=.0574, the
zoomed in tori looks like-
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Plots for µ=3.7
Analysis

Plot for α=.0604
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Plots for µ=3.7
Analysis

Plot for α=.0674
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What have we seen?
Analysis

Basically what we can see in these graphs that as the coupling is
increased, the waves become straightened and the motion becomes
quasiperiodic.

Hence both of µ values, µ=3.5 and µ=3.7 show quasiperiodicity for
some values of α.

If you repeated these calculations for other µ values for which the
logistic map shows 2n band chaos. Similar bifurcation sequences are
observed, with chaos going to quasiperiodicity, then to periodic
behaviour. The in phase attractor is always favoured by large values
of the coupling, with both x and y behaving like iterates of the single
logistic map at the same µ value.
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How is this useful?

The coupled logistic map exhibits a much wider range of dynamic
behaviour than the single logistic map, much of which may be
important to the study of population dynamics.

Crisis behaviour may be more dramatic, with sudden changes in
dynamic behaviour occurring for small changes in the parameters
controlling the nature of the dynamics.

Finally this quote seems to come true

You must have chaos within you to give birth to a dancing star.
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Brief Review of the Model

In our class we studied the logistic map, a simple 1-dimensional
non-invertible map that exhibited chaos.
xn+1=r xn (1-xn)

Now we introduced the coupled-logistic map, to reflect the spatial
heterogeneity and consequently, the possibility of migration that is
usually observed.
xn+1=(1-D) f(xn)+D f(yn)
yn+1=D f(xn)+(1-D) f(yn)
where f(x)=r x (1-x)
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The Question

Can Migration Stabilize Local Population Dynamics?

At first the question seemed quite straightforward; except we needed
to know what ’stabilisation’ meant in this context.

Does it mean that the system is non-chaotic? Or does it mean that
the system, which models population and migration, ensures that the
now ’stabilised’ population doesn’t go to extinction?

Turns out they’re not very different after all.

But first we present results2 of a stability analysis of the fixed points
and 2- periodic orbits of this coupled system.

2A detailed proof can be found in Does Migration Stabilise Local Population
Dynamics? Analysis of a Discrete Population Model by Gyllenberg et. al. For reasons
that it is indeed mechanical and repetitive, it is not shown here.
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Stability Analysis- Approach

We are interested in the parameter space such that
0 ≤ r ≤ 4 and 0 ≤ D ≤ 0.5

(x, y) ∈ I2 := [0,1] × [0,1]

We are interested in the two 2-periodic orbits3

In Phase
(x,x): x=(r+1)1/2[(r+1)1/2 ±(r -3)1/2]/2 r

Out of Phase

(u+v+1
2 , u−v+1

2 ): u= 1
rg , v=± (r2−2rg2−2g−1)1/2

rg

3For ease of solving, in the calculations of the second iterate and the Jacobian, there
was a simple change of variables, u=x+y-1, v=x-y, g=1-2D
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Stability Analysis-Results

The in phase orbit exists only for r>3 and it is

Stable for: 3 < r < 1+
√

6

Saddle for: 0 < D < 0.25, 1+
√

6 < r < 1+(5+g−2)1/2

Unstable for: r > 1+(5+g−2)1/2

The out-of-phase orbit exists in I 2 if
0 < D < 0.25 and r > 2+1/g

Stable for: 3g−2 + 1 < (r − 1)2 < 3/g +2g−2 +1

Saddle for: 1 + 1/g2 < (r − 1)2 < 3g−2 + 1

Unstable for: (r − 1)2 > 3/g +2g−2 +1
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Figure: Stability regions of the in-phase and out-of-phase 2 periodic orbits. Red:
3/g +2g−2 +1 Blue: 3g−2 + 1 Green: 2+1/g

Focus on:

Regions 7,8,9 below the horizontal line r = 1+
√

6

Regions 7,4,2 between the red and blue curves.
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Back to the Question

The coupled-logistic system has a stable out of phase 2-periodic orbit
for intermediate values of migration, even for those values of growth
rates that a single logistic system would exhibit chaos for.

This is a system that has multiple attractors, and only analysing two
of them means that we can’t speak of the global picture because the
dynamics highly depends on initial conditions.

Now, What sort of dynamics is preferable for a population as a
whole to persist?

Chaotic? Possibility of extinction is present.
Periodic Orbit will not oscillate to extinction.
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The Answer: Stabilisation of Local Population Dynamics

For regions in parameter space, both chaotic and periodic solutions
may exist. However, in the basin of attraction of the periodic
solution, we can be sure that the population is stabilised in the sense
that it won’t go to extinction. We have only discussed the 2-periodic
solution because it can be easily done but the general idea can be
extended to n-periodic orbits. In this way, migration stabilises local
population dynamics.

Two plots are given here, one for r=3.6, D=0.075 and one for r=3.7,
D=0.12.
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r=3.7, D=0.12, X
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r=3.7, D=0.12, Y
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Conclusion

While we have only studied this for the coupled logistic system, one of
the many possible meta-population models, the fact that in such
patch models, dispersal (or migration) can be stabilizing is quite
a general phenomena.

In insect populations, local movement in a patchy environment can
help otherwise unstable host and parasitoid populations to persist
together.4

A predator-prey interaction between spatially dispersed populations
can be considered as many local interactions connected by dispersal.
Even when the local subsystems quickly become extinct in isolation, an
ensemble of interconnected cells can, under certain conditions, persist
much longer. 5

4Hassel, M.P., Comins, H.N., May R.M. (1991) Spatial structure and chaos in insect
population dynamics

5Crowley, P.H. Dispersal and the stability of predator-prey interactions
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